If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+42x-112=0
a = 1; b = 42; c = -112;
Δ = b2-4ac
Δ = 422-4·1·(-112)
Δ = 2212
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2212}=\sqrt{4*553}=\sqrt{4}*\sqrt{553}=2\sqrt{553}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-2\sqrt{553}}{2*1}=\frac{-42-2\sqrt{553}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+2\sqrt{553}}{2*1}=\frac{-42+2\sqrt{553}}{2} $
| 2/j+7=12 | | 22/4=8/x | | -4(z-9)=-3z-3 | | 9+2x=3x–4 | | -24+3x=-3(x+8)-8x | | -2.28x-3.5=10.8 | | -11y-2=5y^2 | | 1/4x/1/8=51/2 | | 4b+35=7(b-2)+4b | | 33-2y=51 | | 4(y+5)-8y=-16 | | f/5+40=36 | | 5x+3(2x-7)=14 | | 6x2+24x=0 | | -10+3.4x=15.2 | | 7(s-88)=28 | | 7n+3(-1+7n)=30-5n | | 1/4x-1/8=51/2 | | 2x+8=3x-4,x | | 23-3w=14 | | 6(v-2)-8v=2 | | 2/7=4/m+3 | | 1,5x^2-0,5x=0 | | -30-7v=5(7v-6) | | 6m-17=7 | | 12=-3x-12-5x | | 2w+7w=27 | | -4(z-9)=3z-3 | | 102=-6(1-3n) | | 3(x-5)+8=6x-3(3+x) | | 45-8x=8x-6 | | 13+-5n=38 |